"한빛미디어 서평단 <나는리뷰어다> 활동을 위해서 책을 협찬 받아 작성된 서평입니다."

 

"박해선"님의 명작 도서, "혼자 공부하는 머신러닝+딥러닝"의 "개정판"이 나왔다 !!!

 

AI 관련하여 공부를 했던 사람들이라면 아마도 모두 가지고 있을 책이 아닐까 싶은데,

물론 나도 기존 도서를 가지고 있어서 비교 사진을 찍어봤다.

 

동그라미도 하나 추가되었고, 페이지도 더 많아진 새로운 개정판이다.

그래서인지 정가도 2.6만원에서 3.2만원으로 인상되었다. ㅋㅋㅋ

 

 

초판 발행 뒤, 4-5년 정도가 지났으니 물가 인상을 고려하면 정가 인상에 대해서도 충분히 이해가 간다!

벌써 4-5년이 흘렀다니... 처음 이 책으로 공부했던 때가 어제 같은데... 

 

이 책의 장점은 머신러닝에서부터 딥러닝까지 전반적인 사항을 모두 담고 있다는 것이다.

 

 

책에서도 말해주다 싶이, 반드시 순차적으로 공부해야하는 것은 아니다.

 

머신러닝에 대해서 공부하고 딥러닝을 살펴보는 것이 도움이 되기는 하지만,

필수는 아니기에 과감히 점프하고 딥러닝을 공부하는 것도 나쁘지는 않다.

 

 

이 책의 초판이 나오는 시점에서는 Tensorflow가 많이 사용될 때라 괜찮았지만,

최근에는 대부분 Pytorch를 많이 사용하기에 개정판에서 파이토치에 대한 내용을 추가해 준 것은 정말 반갑다.

 

혼공 시리즈의 책답게 동영상 강의도 멋지게 제공을 해준다.

- https://www.youtube.com/playlist?list=PLJN246lAkhQihHwcbrZp9uuwgxQen5HS-

 

 

큰 변화가 없는 챕터의 경우에는 기존 동영상 강의를 재활용하셨을거라 생각했는데, 전부 새로 등록하신 것 같다! 와우!

 

깃허브에 친절하게도 주피터노트북 파일들을 모두 등록해주셨다.

- https://github.com/rickiepark/hg-mldl2

 

"박해선"님의 블로그를 참고하면 좋다. 정오표도 확인할 수 있다.

- https://tensorflow.blog/hg-mldl2/

 

 

개인적으로 처음에 공부할 때에 이 책을 보고선 좀 당황한 적이 있었다.

다른 곳에서 설명하는 것들과는 조금 다른식으로 접근하거나 설명하는 것들이 있어서였다.

 

그래서 잠시 이 책을 끊고(?) 이렇게 저렇게 시간이 흘러

"혼공학습단"을 통해 다시 이 책을 공부해 보고자 시작하게 되었는데 !!!

 

머신러닝이나 딥러닝을 조금 공부하고 다시 이 책을 봤더니 감탄을 할 수 밖에 없었다.

아! 이래서 박해선님이 이 부분을 이렇게 설명을 하셨구나!

 

혼자 공부할 수 있도록 잘 정리되고 친절한 설명이 되어 있는 책이지만,

사실 이 책의 일부 챕터만 가지고도 책 한권이 나올 수가 있을만큼

크고 방대한 내용을 다루는 책이 바로 이 "혼공머신"이다.

 

그렇기에 이 책을 제대로 공부하기 위해서는 좀 더 꼼꼼하게 살펴보는 것을 권해본다.

 

이 책에 대해서 서평을 한 마디로 남겨 본다면,

"머신러닝, 딥러닝"을 공부해보고 싶다면 무조건 추천해드립니다!!!

반응형

드디어 딥러닝으로 들어간다~!!! 고! 고!

 

 

 

인공 신경망 (Neural Network)

- 텐서플로(Tensorflow), 케라스(Keras)

- 이진 분류: binary_crossentropy, 다중 분류: categorical_crossentropy

- Dense → Sequential → compile → fit → evaluate

 

심층신경망

- model.summary()

- keras.layers.Flatten()

- relu

- optimizer

  . 기본 경사 하강법 옵티마이저: SGD, Momentum, nesterov

  . 적응적 학습률 옵티마이저: RMSprop, Adam, Adagrad

 

신경망 모델 훈련

- loss function

- epochs

- drop-out

- early stopping

 

 

 

기본 숙제 : Ch.07(07-1) 확인 문제 풀고, 풀이 과정 정리하기

 

1. 어떤 인공 신경망의 입력 특성이 100개이고 밀집층에 있는 뉴런 개수가 10개일 때 필요한 모델 파라미터의 개수는 몇 개인가요?

 

③ 1,010 개

 

→ 풀이

'wx + b'와 같기 때문에 뉴런의 개수가 10개이고 입력값이 100개라면 다음과 같이 계산할 수 있다.

10 * 100 + 10 = 1010

 

 

2. 케라스의 Dense 클래스를 사용해 신경망의 출력층을 만들려고 합니다. 이 신경망이 이진 분류 모델이라면 activation 매개변수에 어떤 활성화 함수를 지정해야 하나요?

 

② sigmoid

 

→ 풀이

이진 분류 모델이라면 0과 1로 수렴하는 형태가 유리하므로 sigmoid를 사용하는 것이 적합하다.

 

 

3. 케라스 모델에서 손실 함수와 측정 지표 등을 지정하는 메서드는 무엇인가요?

 

④ compile()

 

→ 풀이

간단한 형태의 코드 샘플을 통해 알아볼 수 있다.

dense = keras.layers.Dense(10, activation='softmax', input_shape=(784,))
model = keras.Sequential(dense)
model.compile(loss='sparse_categorical_crossentropy', metrics='accuracy')
model.fit(train_scaled, train_target, epochs=5)
model.evaluate(val_scaled, val_target)

 

 

4. 정수 레이블을 타깃으로 가지는 다중 분류 문제일 때 케라스 모델의 compile() 메서드에 지정할 손실 함수로 적절한 것은 무엇인가요?

 

① sparse_categorical_crossentropy

 

→ 풀이

One-Hot 방식인 경우 'categorical_crossentropy'를 사용하면 되고,

정수 레이블이라면 'sparse_categorical_crossentropy'를 사용하면 된다.

 

 

 

추가 숙제 : Ch.07(07-2) 확인 문제 풀고, 풀이 과정 정리하기

 

 

 

1. 다음 중 모델의 add() 메서드 사용법이 올바른 것은 어떤 것인가요?

 

② model.add(keras.layers.Dense(10, activation='relu'))

 

→ 풀이

보통 다음과 같은 형태로 작성하는 것을 권장하지만, 1-라인으로 작성한다면 ②번 형태로 작성하면 된다.

dense1 = keras.layers.Dense(10, activation='relu')
model.add( dense1 )

 

 

2. 크기가 300x300인 입력을 케라스 층으로 펼치려고 합니다. 다음 중 어떤 층을 사용해야 하나요?

 

② Flatten

 

→ 풀이

2차원 입력이 들어오면 1차원으로 변경하는 layer를 배치하면 된다.

 

keras.layers.Flatten(input_shape=(300, 300))

 

 

3. 다음 중에서 이미지 분류를 위한 심층 신경망에 널리 사용되는 케라스의 활성화 함수는 무엇인가요?

 

ⓑ relu

 

→ 풀이

relu 함수의 경우 "max(0, z)" 함수와 같은 형태로써 이미지 분류에서 유용하다.

 

 

4. 다음 중 적응적 학습률을 사용하지 않는 옵티마이저는 무엇인가요?

 

① SGD

 

→ 풀이

SGD(Stochestic Gradient Descent)는 기본 경사 하강법 옵티마이저의 가장 대표적인 위치에 있다.

반응형

뭔가 흐름이 끊겼지만, 포기하기는 싫어서 달려보련다!

목차 1
목차 2

 

 

06-1 군집 알고리즘 (Clustering)

- 비지도 학습

- 이미지(gray, 2차원) 데이터 다루기

 

06-2 k-평균 (KMeans)

- 하이퍼파라미터 (k)

- 최적의 k 찾기 : inertia

 

06-3 주성분 분석 (PCA)

- 차원축소

- PCA

- 설명된 분산 (explained variance ratio)

 

혼공학습 숙제

 

[ 기본 숙제 : k-평균 알고리즘 작동 방식 ]

- 비지도 학습(Unsupervised Learning)의 가장 대표적인 사례가 바로 군집화(Clustering)이다.

- 군집화(Clustering)의 가장 대표적인 알고리즘이 바로 K-평균(K-Means) 알고리즘이다.

 

- centroid(중심점)을 기준으로 데이터들과의 거리를 최소화하는 것을 목표로 한다.

- 거리를 계산하는 여러 방법이 있으나 보통 유클리드 거리(Euclidian Distance) 방식을 사용한다.

 

- 이를 이용하여 K-Means 알고리즘은 다음과 같은 방식으로 최적화 한다.

 

 

[ 추가 숙제 : Ch.06(06-3) 확인 문제 풀고, 풀이 과정 정리하기 ]

 

1. 특성이 20개인 대량의 데이터셋이 있습니다. 이 데이터셋에서 찾을 수 있는 주성분 개수는 몇 개일까요?

→ 주성분 분석(PCA)라는 것은 차원 축소 방법 중 하나로써, 원본 데이터의 특성 개수와 같거나 적을 수 있다.

     그러므로 정답은 ②번이긴 할텐데.... 사실 ①번이라고 해도 틀렸다고 하기 힘들지 않을까 한다.

     "이 데이터셋에서 찾을 수 있는 최대 주성분 개수는 몇 개일까요?"라고 하는 것이 맞을 것 같다.

 

2. 샘플 개수가 1,000개이고 특성 개수는 100개인 데이터셋이 있습니다. 즉 이 데이터셋의 크기는 (1000, 100)입니다. 이 데이터를 사이킷런의 PCA 클래스를 사용해 10개의 주성분을 찾아 변환했습니다. 변환된 데이터셋의 크기는 얼마일까요?

→ 10개의 주성분을 찾아 변환했다고 했으니 당연하게도 ①번이 정답이다.

 

3. 2번 문제에서 설명된 분산이 가장 큰 주성분은 몇 번째인가요?

→ 분산이 큰 것부터 정렬되므로 ①번 첫 번째 주성분의 분산이 가장 크다.

 

그냥 문제 풀기만 하니까 아쉬워서 직접 코드로 증명을 해봤다.

 

 

여기까지~!!

반응형

가족 여행 및 대학원 MT로 인해... 엄청난 지각 공부를 한다.

미리 하지 못했음에 대해 반성 !!!! 무릎 꿇고 반성 !!!

 

05-1 결정 트리 (Decision Tree)

- 로지스틱 회귀 (Logistic Regression)

- 결정 트리 (Decision Tree Classifier), 가지 치기(Prunning)

 

05-2 교차 검증과 그리드 서치

- 검증 세트 (validation)

- 교차 검증 (Cross Validation)

  . 분할기(Splitter)를 사용한 교차 검증 : StratifiedKFold

- 하이퍼파라미터 튜닝 (Hyperparameter Optimization)

  . 그리드 서치 (GridSearchCV)

  . 확률 분포 선택 : uniform, randint

  . 랜덤 서치 (RandomizedSearchCV)

 

05-3 트리의 앙상블 (Ensemble)

- 정형 데이터와 비정형 데이터

  . 텍스트/오디오/이미지/영상 등의 비정형 데이터는 주로 DL 에서 취급

- 랜덤 포레스트 (RandomForest)

- 엑스트라 트리 (ExtraTrees)

- 그래디언트 부스팅 (Gradient Boosting)

- 히스토그램 기반 그래디언트 부스팅 (Histogram Gradient Boosting)

- XGBoost vs LightGBM

 

 

 

 

기본 숙제 : 교차 검증을 그림으로 설명하기

 

추가 숙제 : 앙상블 모델 손 코딩

- 전체를 캡처하는 것은 무의미한 것 같아, 하단부 부분만 캡처 !!!

 

반응형

 

어느덧 벌써 4장을 공부하고 있는 3주차가 되었다.

만날 일요일 밤에 벼락치기하고 있는 불량한 참가자 신세이지만....

이렇게라도 공부하려하는 스스로를 기특해 해야지 !!!!! 쓰담~ 쓰담~

 

 

04-1 로지스틱 회귀 (Logistic Regression)

- 분류 (Classifier) 모델

- vs. KNeighborClassifier

- 이진 분류 : 시그모이드(Sigmoid)

- 다중 분류 : 소프트맥스(Softmax), parameter C

 

04-2 확률적 경사 하강법 (Stochastic Gradient Descent)

- 점진적 학습 → 확률적 경사 하강법

- 손실함수 (loss function)

- 로지스틱 손실 함수 (logistic loss function, Binary Cross-Entropy loss function)

- partial_fit()

 

 

가제트 형사를 그려주신 것 같은데... MZ(GenZ?) 분들은 아시려나!? ㅋㅋㅋ

 

 

 

Homework

 

 

[기본 숙제]

 

 

- ① 시그모이드 함수(Sigmoid Function)

 

→ 기본적으로 선형 함수만 사용하는 경우 결과값이 너무 커지거나 너무 작아질 수 있으므로

     비선형 함수를 이용하여 값을 수렴하게 만드는 것이 계산하기에 용이해진다.

     이 때, 로지스틱 회귀에서 이진 분류를 사용하는 경우 시그모이드 함수를 이용하면

     0에서 1사이의 값으로 변환이 되며, 0.5를 기준으로 0과 1로 결과를 판단하기에 적합하다.

 

[추가 숙제]

반응형

 

고작 2주차인데, 뭔가 많다!

그런데, 여기서 끝이 아니라 뒤에 좀 더 있다!!!

 

다시 한 번 느꼈지만, 이 책은 절대 초보자를 위한 책이 아니다 !!!

 

03-1. K-최근접 이웃 회귀 (K-NN Regression)

- n_neighbors 파라미터를 이용하여 최근접 이웃과의 거리 평균을 이용하여 회귀

- 과대적합 vs. 과소적합

- n_neighbors 값 변경을 통해 과대적합, 과소적합 이슈 해결

 

03-2. 선형 회귀 (Linear Regression)

- coef_, intercept_

- 과대/과소 적합 이슈 → 다항 회귀

 

03-3. 특성공학과 규제

- 다항 특성 만들기 : PolynomialFeatures

- 규제 전에 표준화 : StadardScaler

- Ridge & Lasso

 

 

기본 숙제

동영상 강의에 얼추 나와있는 내용이라 어렵지 않다 ^^

 

n_neioghbors 값을 바꿔가면서 예측하고, 이것을 그래프로 표현하면 된다.

 

눈으로 봐도 얼추 5값이 적당하지 싶다~

 

추가 숙제

[ 모델 파라미터에 대해 설명하기 ]

 

파라미터는 머신러닝 및 딥러닝 모델의 핵심 요소로써,

모델이 데이터를 통해 학습하고 예측을 수행하는 데 필요한 내부 변수들을 의미한다.

이 값들을 적절히 조정하게 되면 모델은 주어진 문제를 효과적으로 해결할 수 있게 된다.

 

K-최근접 이웃 회귀(K-NN Regression) 챕터에서 n_neighbors 값을 조정하면서

과대적합이나 과소적합 문제를 완화하는 과정을 앞에서 살펴보았는데

여기에서 n_neighbors가 바로 모델 파라미터 중 하나이다.

 

 

반응형

첫 주는 조금 여유로울줄 알았는데, 공부할게 많다.

 

 

02-1. 훈련 세트와 테스트 세트

확인 문제를 통해 이 부분을 공부해보자.

 

1. 머신러닝 알고리즘의 한 종유로서 샘플의 입력과 타깃(정답)을 알고 있을 때 사용할 수 있는 학습방법은 무엇인가요?

- 머신러닝은 크게 지도학습과 비지도학습으로 구분할 수 있고, 정답을 알고 있는 경우 지도학습을 적용한다.

→ ① 지도학습

 

2. 훈련 세트와 테스트 세트가 잘못 만들어져 전체 데이터를 대표하지 못하는 현상을 무엇이라고 부르나요?

- 훈련 세트와 테스트 세트를 만들 때 전체적인 데이터 분포를 유지하는 것이 중요하며 그렇지 못한 경우 편향을 보인다.

→ ④ 샘플링 편향

 

3. 사이킷런은 입력 데이터(배열)가 어떻게 구성되어 있을 것으로 기대하나요?

- 문제 해석이 조금 오해의 여지가 있어 보이지만, 특성은 열(column)로 나열되어 있고 데이터의 구분은 행으로 된다.

→ ② 행: 샘플, 열: 특성

 

 

 

02-2. 데이터 전처리

이 책은 초보자를 위한 수준은 아닌 것 같고, 기본 지식이 좀 있어야 따라갈만한 것 같다.

어쩐지 처음 이 책으로 공부할 때 왠지 자괴감이 좀 들더라니..... ㅠㅠ

 

분산 = 기대값(평균)으로부터 얼마나 떨어진 곳에 분포하는지를 가늠하는 숫자

표준편차 = 분산의 제곱근

 

 

표준화(Standardization) = 평균을 0, 분산을 1로 만들어주는 스케일링 기법 (Z-Score 활용)

 

기본이 될만한 것들을 같이 정리하면서 공부해봐야겠다.

반응형

새해를 맞이하여 야심찬 목표를 세우고 힘차게 달리다가 ... 살짝 지치기도 하고 ... 번아웃도 오고 ...

그러던 와중 또 다시 심장을 뛰게 해주는 혼공학습단 12기 모집 공지를 발견했다 !!!

 

그리고, 정말 고맙게도 지원을 받아주셔서 12기로 활동(공부?)하게 되었다 !!!

 

이번에 공부할 책은 바로~ 바로~

"혼자 공부하는 머신러닝+딥러닝"

 

책을 구매한지는 정말 오래되었는데, 사실 완독하지는 못했었다.

예전에 무심코 지나갔던 책 안의 중요한 정보~!!!

 

이제서야 함께 합니다 !!!

 

 

6주 코스, 열심히 완주해야지 !!!

https://hongong.hanbit.co.kr/혼공-게시판/?uid=162&mod=document&pageid=1

 

개인적으로 너무나 존경하고 애정하는 "박해선"님의 서적인만큼,

책 자체의 퀄리티도 너무나 훌륭하고 예제 및 동영상 등 부수적인 부분들도 너무나 훌륭하다.

https://www.youtube.com/playlist?list=PLVsNizTWUw7HpqmdphX9hgyWl15nobgQX

 

저 동영상 녹화할 때 몇 번 라이브에 참여도 했었는데 ^^

 

 

우리를 공부시키기 위해 박해선님은 정말 많은 고민을 하시는 것 같다 ^^

 

챕터 구성에 대해서도 많은 고민의 흔적이 엿보인다.

 

 

 

뭔가 서론이 길었다!

이제 시작해보자.

 

 

Chapter 01. 나의 첫 머신러닝

 

 

01-1. 인공지능과 머신러닝, 딥러닝

박해선님은 직접 그린 그림과 글씨를 좋아하시는 것 같다 ^^

https://www.youtube.com/watch?v=J6wehCO_c58

 

 

 

01-2. 코랩과 주피터 노트북

이제는 이 책이 나온지도 조금 시간이 지나서

사용한 도구/패키지들의 버전들이 좀 옛날 것들이다.

 

Colab에 들어가서 기본적으로 설치된 Python 버전만 확인해봐도 좀 차이가 발생한다.

https://colab.research.google.com/

 

직접 실습들을 해보면서 버전 차이로 발생하는 것들이 있는지 확인해보면 재미있을 것 같다.

 

 

 

01-3. 마켓과 머신러닝

타이틀이 조금 웃기는데, 저런 제목이 나온이유는 다음과 같다.

https://www.youtube.com/watch?v=GOCVVSMeIf8

 

머신러닝을 공부하기 위해서 문제 상황을 다음과 같이 가정해보자.

- 생선을 파는 마켓이 있다.

- 생선의 크기나 무게를 가지고 그 생선이 무엇인지 맞추고 싶다.

 

동영상 강의 듣다보면 소음(?) 이슈가 있는데,

라이브로 참여했었을 때 마이크 켜 놓은 참석자가 한 명 있어서 조금 짜증났던 기억이 있다.

메시지로 그 사람한테 계속 뭐라했는데 강의를 듣지도 않았던 것 같고 메시지도 보지도 않았던 나쁜 사람 !!! ㅋㅋㅋ

 

첫 실습 내용인데,

첫번째 실습 내용부터 이렇게 쭉~ 진도를 나간다는 것이 조금 당황스럽기는 한데 ...

 

일단 Chapter01 진도는 여기까지!

반응형

+ Recent posts