우연히 보게된 노마드 코더(Nomad Coders)의 유튜브.

파이썬 코드만가지고 JS, React, NextJS 인터랙티브 웹앱을 만들어주는 프레임워크가 나타났단다.

 

 

최근 정말 많은 주목을 받고 있는 오픈소스 프로젝트인 것은 분명한 것 같다.

 

https://pynecone.io/

 

Pynecone: The easiest way to build web apps.

Completely customizable. All Pynecone components are fully customizable. Change the colors, fonts, and styles to match your project. Styling guide ->

pynecone.io

 

발음이 같은 'pinecone'을 상징하는 솔방울을 로고로 사용하고 있다 ^^

 

공식 웹사이트도 Pynecone을 사용해서 만들었다고 한다.

왠지 Unix is Not Unix 같은 느낌인데!? 아닌가?! ^^

 

 

Pynecone은 파이썬으로 작성한 코드를

React/NextJS로 컴파일을 하는 방식이기에 성능이 뛰어나며 그래서 node를 필요로 하고 있다.

 

보다 더 나은 성능을 위해 node를 bun으로 교체하는 작업을 하고 있지만

아직 100% 호환성을 보장하지 못하기에 당분간은 node를 계속 필요로 할 것이라고 한다.

 

 

서두가 길었다.

이제 직접 한 번 사용해보자.

 

 

이하 과정은 다음 링크의 내용을 따라갔다.

- https://pynecone.io/docs/getting-started/installation

 

 

0. PoC Environment

  - 이하 과정을 진행한 환경은 Ubuntu 20.04 64bit Desktop 이다.

 

 

2. Prerequisites

  - Python 3.7+

  - NodeJS 12.22.0+

 

  ① Python 여러 버전을 관리할 수 있는 pyenv 기반으로 설치해보자.

    . https://www.whatwant.com/entry/pyenv

    . 설치한 버전은 다음과 같이 했다.

      - v3.8.16

 

  ② node 설치도 여러 버전을 관리할 수 있는 nvm 기반으로 설치를 진행해보자.

    . https://www.whatwant.com/entry/npm

    . 설치한 버전은 다음과 같이 했다.

      - v18.15.0   (Latest LTS: Hydrogen)

 

 

3. Virtual Environment

  - Optional 이라지만, 사실 필수이지 않을까 싶다.

❯ cd ./workdir

❯ python -m venv .venv

source .venv/bin/activate

 

 

4. Installing

  - 이제 pynecone 설치하면 된다!

 pip install pynecone

 

 

5. Create a Project

  - 일단 프로젝트 생성하는 방법부터 알아보자.

 mkdir my_app_name

 cd my_app_name

 pc init

 

 

6. Run the App

  - 일단 한 번 띄워보자.

 pc run

 

  - 브라우저로 확인해보자.

 

 

 

7. Edit

  - 본문을 살짝 살펴보자.

❯ nano my_app_name/my_app_name.py

  - 눈꼽만큼 변경해보자.

"""Welcome to Pynecone! This file outlines the steps to create a basic app."""
from pcconfig import config

import pynecone as pc

docs_url = "https://pynecone.io/docs/getting-started/introduction"
filename = f"{config.app_name}/{config.app_name}.py"


class State(pc.State):
    """The app state."""

    pass


def index() -> pc.Component:
    return pc.center(
        pc.vstack(
            pc.heading("Welcome to WHATWANT!", font_size="2em"),
            pc.box("Get started by editing ", pc.code(filename, font_size="1em")),
            pc.link(
                "Check out our docs!",
                href=docs_url,
                border="0.1em solid",
                padding="0.5em",
                border_radius="0.5em",
                _hover={
                    "color": "rgb(107,99,246)",
                },
            ),
            spacing="1.5em",
            font_size="2em",
        ),
        padding_top="10%",
    )


# Add state and page to the app.
app = pc.App(state=State)
app.add_page(index)
app.compile()

 

  - 포트도 변경하고, debug log도 찍어보자.

❯ pc run --port 8282 --loglevel debug

 

  - http://localhost:8282/

 

 

8. Fast Refresh

  - Pynecone은 실시간으로 변경 사항이 반영된다.

  - 웹브라우저가 띄워져 있는 상황에서, 다른 터미널로 파일을 수정해보자.

❯ nano my_app_name/my_app_name.py

 

  - 파일을 수정한 뒤, 저장을 하면 조금 있다가 브라우저에 자동으로 페이지 내용이 변경된다.

 

 

 

일단 여기까지 살짝 맛만 봤고

시간이 나면 다음 단계로 넘어가보겠다. (시간이 날까?! ^^)

 

반응형

제가 정말 정말 좋아하는 번역자이자 작가이신 박해선님이 내놓은 또 하나의 역작이 나왔다.

 

"혼자 공부하는 데이터 분석 with 파이썬"

 

 

요즘은 딥러닝 모델에 대해서 공부하는 것 보다

데이터 분석하는 것이 더 많이 유행하고 있는 듯 하다.

 

이런 분위기에 정말 딱 맞게 나온 책이 아닌가 싶다.

 

우리 회사에서도 DS 인증 프로그램을... @.@

 

 

박해선님은 번역하신 책이든, 직접 작성하신 책이든 항상 정성이 가득하다.

 

실습 내용도 하나 하나 모두 직접 업데이트 해주시고

Youtube로 강의도 제공하여 주시고, 심지어 오픈채팅까지도 운영해주신다니...

 

 

무려 13개의 강의 동영상을 제공해주신다!

- https://www.youtube.com/playlist?list=PLVsNizTWUw7FGzSRCkQrPEEe-ljVXgS7k 

 

 

직접 물어보고 대답을 들을 수 있는 카카오 오픈채팅 !!!

- https://open.kakao.com/o/gBF5aQ1c

 

 

1월 2일, 새해가 시작하자마자 1쇄 발행을 하다니... 너무 한 것 아닌가?! ㅋㅋㅋ

 

 

박해선님은 항상 도식화를 좋아하시는 것 같다 ^^

 

 

딥러닝 모델링에 대해서 공부하려면 수학이 발목을 잡는 것 처럼

데이터 분석에 대해서 공부하려면 파이썬이 발목을 잡는다.

 

발목 잡히지 않으려면 시간을 들여서 제대로 파이썬을 공부해놓는 것이 좋다.

 

 

도식화, 로드맵을 정말 좋아하시는 박해선님! ^^

 

 

오해하면 안된다.

"이 도서가 얼마나 인기가 좋을까요?"는 정말 이 책에 대한 것이 아니라

데이터 분석의 첫 번째 예제일 뿐이다 ^^

 

 

박해선님은 그림도 잘 그리신다~ ^^

 

 

ML/DL

머신러닝과 딥러닝이 막 알려지면서 사람들이 공부를 시작할 때에는

DS(Data Science, 데이터 과학)에 대한 영역이 대중적으로 정착되지 않았었다.

 

지금은 Data Scientist, Data Engineer 직종이 정착된 것 같다.

외부에서 만나는 많은 분들이 "저는 OO에서 데이터 사이언스로 일하고 있어요"라고 하고 있다는...

 

 

책 구성을 보면 정말 정성 가득함이 엿보인다.

 

 

이 책을 보다가 새롭게 배운 지식

 

"Data Analytics(데이터 분석) vs. Data Science(데이터 과학)"

 

 

음 ... 이 정도면 ... Full Stack ... 만능 아닌가 ?!

 

 

Summary 까지 꼼꼼하게 되어 있다.

 

 

혼자서, 또는 다같이 공부할 수 있도록 "확인 문제"도 제공해준다.

주관식은 너무 어렵다는...

 

 

직접 실습을 해볼 수 있도록 GitHub 저장소도 제공해주고, 설명도 친절히 해준다.

 

 

링크까지 꼼꼼히 제공해주는 박해선님!!!

 

 

리뷰 때문에 살펴보다가 알게된 정말 꿀팁 !!!

 

정부 주도로 진행한 데이터들일텐데,

요즘 시대에 아직도 Euc-KR 형식으로 만들어진 데이터 볼 때마다 정말 ... 에휴 ... 할말하않 !!!

 

 

 

이 책은 뭐 두말할 필요 없이 무조건 추천한다.

 

박해선님이 지은 책이라는 것 만으로도 추천하지만,

책 내용 및 책 외부적으로 제공되는 컨텐츠 모두 정말 정성 가득한 책이다.

 

"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."

반응형

 

최근 회사에서 Data Science 교육을 받고 있는데,

마침 그에 알맞는 책을 리뷰하게 되었다.

 

표지

 

Machine-Learning 공부할 때에도 만났었고

Data-Mining 공부할 때에도 만났었는데,

이번에 Data-Science를 공부할 때 또 만났다.

 

징그러운 베이지안 !!!

 

2판

 

초판(1판)이 2014년도에 출간 되었었는데,

2판이 8년만에 2022년 6월에 출간되었다.

 

우와~ 역사가 오래된 책이네...

그렇다는 것은, 베이지안 공부가 필요한 사람이 여전히 꾸준히 많다는 것이겠지.

 

원서의 경우에도 1판은 2013년도에 출간되었고,

2판은 2011년에 출간되었다.

 

대상

 

이 책으로 공부하기 위해서 필요한 것은 오직 "파이썬" !!!

 

목차

 

책 제목에 "베이지안"이 써있다고 해서

"베이지안"에 대해서만 설명하는 책은 아니다.

 

확률, 분포, 포아송, 의사결정분석, 로지스틱 회귀 ...

필요한 것들 다~ 있다 ^^

 

본문

 

친절한 설명과 함께 실행 결과도 예쁘게 보여준다.

 

요약

 

뒷 부분에는 친절하게 요약까지 해주고 있다.

 

연습문제

 

심지어 연습문제도 있다.

 

혼자서 공부하기에도 좋고

스터디로 진행하기에도 좋고

교재로 사용하기에도 좋다.

 

 

더더욱 멋진 것은... 책이 무료 공개되어있다.

http://allendowney.github.io/ThinkBayes2/index.html

 

eBook

 

심지어 친절하게 PDF 다운로드 링크까지도 제공해준다.

 

 

소스코드도 제공된다.

https://github.com/AllenDowney/ThinkBayes2

 

GitHub

 

솔직히 영어 부담만 없다면,

PDF보다 이렇게 노트북으로 보는게 훨씬 더 좋을 것 같다.

 

하지만, 우리는 한글을 사용하는 민족 !!!

일단 책 구매하고

제공되는 리소스들을 이용해서 훨씬 더 열심히 공부하면

몇 배 더 효율적으로 배울 수 있다 !!!

 

 

이 책 말고도

저자 Allen B. Downey님은 쓰신 책들을

무료로 제공해주고 있다.

 

Green Tea Press

https://greenteapress.com/wp/

 

 

파이썬 언어를 가지고 데이터싸이언스 공부를 하신다면

기본 교재로 추천합니다!

 

 

 

"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."

 

반응형

 

표지

 

최근 전세계적인 어려운 경제 상황에

운명처럼 만나게 된 책

 

"파이썬 기반 금융 인공지능 (Artificial Intelligence in Finance)"

 

초판 1쇄

 

받아본 책은

이제 태어난지 갖 1달 된 따끈따끈한 책이지만...

원서는 2020년에 첫 출간되었었다.

 

First Edition

 

2년이 지난 책이라 조금 아쉬움은 있지만,

그래도 이렇게 번역서가 나온 것만으로도 정말 고마운 일이다.

 


예전에 퀀트 투자 관련된 책을 살짝 살펴본 적이 있었는데

그래서인지 이 책 제목을 보고

제일 먼저 든 생각은

"이 책도 퀀트 투자 관련된 것이겠구나!"

였다.

 

 

그래서 살펴본 목차는 다음과 같다.


[PART I 기계지능]

CHAPTER 1 인공지능
CHAPTER 2 초지능

[PART II 금융과 머신러닝]

CHAPTER 3 규범적 금융
CHAPTER 4 데이터 기반 금융
CHAPTER 5 머신러닝
CHAPTER 6 인공지능 우선 금융

[PART III 통계적 비효율성]

CHAPTER 7 밀집 신경망
CHAPTER 8 재귀 신경망
CHAPTER 9 강화 학습

[PART Ⅳ 알고리즘 트레이딩]

CHAPTER 10 벡터화된 백테스팅
CHAPTER 11 리스크 관리
CHAPTER 12 집행 및 배포

[PART Ⅴ 전망]

CHAPTER 13 인공지능 경쟁
CHAPTER 14 금융 특이점

[PART Ⅵ 부록]

APPENDIX A 상호작용형 신경망
APPENDIX B 신경망 클래스
APPENDIX C 합성곱 신경망

 

 

퀀트 투자 책인 것은 맞지만,

금융 데이터들을 어떻게 AI를 활용하면 좋을지에 대해서

포커스가 맞춰진 책이다.

 

목차 설명

각 목차 앞에서는 어떤 의도로 작성되었는지,

어떤 내용인지에 대해서 설명을 먼저 해주고 있다.


정말 친절하게도 학습 플랫폼도 제공을 해주고 있다.

 

https://aiif.pqp.io/

 

학습 플랫폼

 

이메일 주소를 가지고 계정을 등록해야하는 불편함은 있다.

이메일 인증 후 로그인 하면 다음과 같은 플랫폼을 사용할 수 있다.

 

Jupyter Notebook

 

커널도 제공을 하고 있는 것 같지만,

뭔가 설정을 필요로 하는 것인지...

실제 실행을 하면 에러가 발생했다.

 

커널 에러

 

다운로드 받아서 colab에서 실행을 해보니

잘 된다.

 

colab


금융데이터를 가지고 어떻게 인공지능(AI/ML)을 이용해서

다뤄야 할지 공부할 수 있는 좋은 책이다.

 

이 책에서 다루는 라이브러리는 다음과 같은데,

 

python / scikit-learn / tensorflow / keras

 

일반적으로 많이 사용되는 라이브러리들이기에

많은 분들에게 쉽게 다가설 수 있을 것이다.

 

다만, 소스코드를 제공하는 방식이

사실 조금 불편하긴 하다.

 

본래 플랫폼까지 제공해주려는 의도인 것 같기는 하지만

그냥 GitHub로 제공을 해주고

Colab을 사용하도록 가이드하는 것이

훨씬 더 접근성이 좋지 않았을까 한다.

 

소스코드가 업데이트 된지도 2년이 되었던데,

독자적인 플랫폼 제공이 어떤 의미가 있는지는....

 

언젠가 퀀트 투자를 이용해서 용돈벌이를 할 수 있기를 꿈꾸며

여기까지 서평을 마치겠다.

 

"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."

 

반응형

 

Python은 왠지 한글하고 친하지가 않은 것 같다.

그나마 v3.x 버전이 되면서 많이 편해지긴 했지만, 그래도 한글 관련 이슈가 계속 나오는 느낌적인 느낌이...

 

MachineLearning 공부하게 되면서 많은 분들이 사용하고 있는 matplotlib의 경우에도

기본적으로는 한글 출력에 문제가 있다.

 

Google Colab 및 Local 환경에서 matplotlib 한글 출력이 잘 되도록 해보자.

 

 

1. Google Colab

 

① 기본 상황

  - 한글 부분이 제대로 나오지 않는 것을 볼 수 있다.

 

font error

 

② 폰트 설치

  - 나눔 폰트를 설치해보자.

 

!sudo apt-get install -y fonts-nanum
!sudo fc-cache -fv
!rm ~/.cache/matplotlib -rf

 

install font

 

③ 런타임 재시작

  - 설치된 폰트를 사용하기 위해 "런타임 다시 시작"을 실행하자

 

런타임 다시 시작

 

④ 폰트 적용

  - 이제 한글을 적용해서 그래프를 그려보자.

  - 설치한 폰트를 사용하도록 한 줄 추가가 되어야 한다.

 

plt.rc('font', family='NanumBarunGothic')

 

matplotlib with hangul

 

  - 그런데, 위의 그래프에서 뭔가 이상한 것을 볼 수 있는가?

  - y축의 "-5" 부분이 제대로 출력되지 않았다.

 

⑤ minus 처리

  - 아래와 같은 구문이 추가되면 된다.

import matplotlib as mpl
 
mpl.rcParams['axes.unicode_minus'] = False

 

fix minus

 

 

2. Local (Ubuntu)

Colab과 비슷하지만 약간 차이가 있다.

 

① 기본 상황

  - 코드가 살짝 다르다.

 

import pandas as pd
import matplotlib.pyplot as plt
import warnings

warnings.simplefilter(action='ignore', category=UserWarning)

plt.plot(['서울', '경기', '인천', '광주', '대구', '부산', '울산', '대전', '제주'], [12, 32, -4, 0, 5, 2, 19, 9, 3])
plt.xlabel('x축')
plt.ylabel('y축')
plt.title('제목')
plt.savefig('test.png')

 

execute

 

error

 

② 폰트 설치

  - 나눔 폰트를 설치해보자.

 

$ sudo apt-get install -y fonts-nanum
$ sudo fc-cache -fv
$ rm ~/.cache/matplotlib -rf

 

③ 코드 개선

  - 폰트 및 마이너스 관련 코드 추가해서 재실행해보자.

 

import pandas as pd
import matplotlib.pyplot as plt
import matplotlib as mpl
import warnings

warnings.simplefilter(action='ignore', category=UserWarning)

plt.rc('font', family='NanumBarunGothic')
mpl.rcParams['axes.unicode_minus'] = False

plt.plot(['서울', '경기', '인천', '광주', '대구', '부산', '울산', '대전', '제주'], [12, 32, -4, 0, 5, 2, 19, 9, 3])
plt.xlabel('x축')
plt.ylabel('y축')
plt.title('제목')
plt.savefig('test.png')

 

new graph

 

예쁜 한글 파이팅 !!!

 

반응형

 

나의 로컬 환경에서 Jupyter Notebook을 사용하고 싶어서 살펴봤다.

 

0. 실행 환경

  - Ubuntu 18.04 환경에서 진행했지만, 20.04 등 다른 버전에서도 잘 될 것 같다.

 

1. 설치

  - 가장 편한 "pip"를 이용해서 설치해봤다.

$ pip install jupyter

 

pip install jupyter

 

2. 설치 내역

  - Jupyter Notebook은 여러 패키지의 조합이다. 확인해보자.

$ jupyter --version

 

jupyter --version

 

3. 실행

  - Jupyter Notebook을 실행해보자.

$ jupyter notebook

 

jupyter notebook

 

  - 자동으로 브라우저가 실행되며 Jupyter Notebook을 볼 수 있다.

 

jupyter notebook

 

  - 오른쪽 중간에 보이는 "New" 버튼을 통해 새로운 Notebook을 생성하고, 간단한 실행을 해보자.

 

jupyter notebook

 

정말 간단히 Jupyter Notebook 환경을 만들 수 있다.

서버로 구동하거나 비밀번호를 등록하는 등의 추가 설정은 별도의 포스팅으로 작성해보도록 하겠다.

 

반응형

 

사이킷런 핵심 개발자가 쓴 머신러닝과 데이터 과학 실무서

Introduction to Machine Learning with Python

파이썬 라이브러리를 활용한 머신러닝 (번역개정2판)

 

표지

 

C / C++ / Java 등의 프로그래밍 언어를 공부하고

Linux, Server, Network 등에 대해서 경험을 쌓아오며 지금까지 밥벌이를 해온 나에게

머신러닝 / 딥러닝 이라는 신문물이 등장하면서 상당한 당혹감을 느낄 수 밖에 없었다.

 

그래서 먹고 살기 위해 머신러닝에 대해 공부를 시작할 수 밖에 없었는데,

벡터, 행렬, 접선, 미분 ... 나를 괴롭히는 수학 !

이과생이지만 사실 수포자인 나에게 정말 가혹한 현실이 아닐 수 없다.

 

지금까지 Software Engineer로 먹고살아온 나로써는

이러한 수학적인 접근 보다는

라이브러리를 이용한 활용 중심으로도 접근해보고 싶다는 생각이 있었다.

 

이에 걸맞는 책이 바로 이 책이 아닐가 싶다.

 

번역개정2판 1쇄

 

나와 같은 Needs가 있는 사람이 적지 않았던 것 같다.

2017년 초판에 이어 개정판을 한 번도 아니고 두 번째나 발행 한 것을 보면 말이다.

 

번역개정2판 특징

 

그런데, 개정을 해주는 것만으로도 감지덕지인데, 그냥 그저 그런 수정판이 아니다.

scikit-learn 1.x 버전에 맞춰 업데이트 된 것 뿐만 아니라 내용도 더 추가가 되었다.

 

구성

 

오래된 이미 검증된 책이라 그런지

책의 전체적인 구성도 너무나 잘 요약해서 설명해주고 있다.

 

저자 인터뷰

 

한국어판을 위한 저자 인터뷰도 실려있다.

형식적인 인터뷰가 아니라 독자들의 질문에 대한 답까지 포함된

저자의 솔직한 심경도 그대로 담겨진 그런 인터뷰다.

 

한국어판 부록

 

목차를 보면 한국어판에서 추가된 항목을 볼 수 있다.

Chapter 한 개당 하나 정도씩 추가 되어 있고, 그 내용도 정말 충실하다.

 

술술

 

개조식 서술 방식이 아니라 이야기 하는 방식으로 풀어나가는 책 내용도 정말 마음에 든다.

말 그대로 술술 읽어나가며 공부할 수 있기에 책에 대한 부담감이 훨씬 적게 느껴지기 때문이다.

 

 

그리고 이 책의 가장 큰 장점 중 하나라고 꼽고 싶은 예제 파일 !!!

  - https://github.com/rickiepark/intro_ml_with_python_2nd_revised

 

옮긴이 박해선님이 훨씬 더 좋게 업그레이드 해준 내용을 담고 있다.

 

 

최근 딥러닝의 인기에 조금 버림받은 것 같은 느낌이 들긴하지만

사실 대부분의 문제는

scikit-learn으로 구현되는 머신러닝으로 해결하는 것이 훨씬 더 효율적이지 않을까 한다.

 

머신러닝 또한 수학적인 배경을 갖고 깊이 공부하는 것이 중요하긴 하지만

활용을 중심으로 scikit-learn 라이브러리 활용에 대해 공부하는 것도 괜찮은 접근일 것이다.

 

 

요즘 공부할 것이 너무 많아 걱정이긴 하지만

꼭 공부해야할 책 목록에 이 책을 꼭 포함시킬 것이다 !!!

 

 

"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."

 

반응형

라떼는 ... Python 버전이 2.x 인지 아니면 3.x 인지만 따지면 됐었는데,

요즘은 ... 3.6 이어도 충분한지 3.7 또는 3.8 호환인지도 따져야 하는 (더러운까지는 아니고) 아주 머리아픈 세상이다.

 

그래서 지금까지는 Ubuntu 환경으로 구축해놓은 개발PC 에서

기존에 JDK에서 사용하던 방식처럼 Python도 alternative 방식으로 원하는 버전을 선택해서 사용했었다.

 

  - https://www.whatwant.com/entry/update-alternatives-여러-버전의-패키지-관리하기

 

 

가볍게 사용하기에는 alternative 방식도 나름 괜찮은 방법이다.

하지만, Python에서는 JDK에서는 만나지 못했던 문제 상황이 발생한다.

작성한 프로그램에서 필요로 하는 패키지들이 있고, 서로간의 dependency까지 신경을 써줘야 한다.

 

패키지 관리에 대한 것은 다음 기회에 살펴보기로 하고,

지금은 일단 여러 버전의 Python을 편하게 사용할 수 있는 방법에 대해서 알아보도록 하겠다.

 

 

[ pyenv ]

  - https://github.com/pyenv/pyenv

 

pyenv

 

왜 이제서야 이 아이를 알게 되었을까!?

진작 알았더라면 훨씬 편하게 살 수 있었을 텐데...

 

이하 과정은 `Ubuntu 18.04` 운영체제에서 `zsh` 쉘환경을 기준으로 진행했다.

일부 차이가 나는 부분에 대해서는 pyenv 사이트에 나오는 가이드를 참고하면 된다.

 

 

1. Environment

 

Ubuntu 패키지로 제공되는 Python2, Python3 모두 설치되어 있으며,

버전 관리를 위해 update-alternatives 설정이 되어 있다.

❯ python --version
Python 3.6.9

❯ sudo update-alternatives --list python

/usr/bin/python2
/usr/bin/python3

❯ sudo update-alternatives --list pip   
/usr/bin/pip3

 

 

2. Prerequisites

 

① remove alternative

alternative가 설정된 상태에서 pyenv는 정상 동작하지 않기에 설정을 지워야 한다.

❯ sudo update-alternatives --remove python /usr/bin/python

❯ sudo update-alternatives --remove pip /usr/bin/pip

 

② install the Python build dependencies

Python build를 위해 필요한 의존성 패키지들을 설치해주자. 좀 많이 설치된다.

❯ sudo apt install make build-essential libssl-dev zlib1g-dev \ 
                        libbz2-dev libreadline-dev libsqlite3-dev wget curl llvm \
                        libncursesw5-dev xz-utils tk-dev libxml2-dev libxmlsec1-dev libffi-dev liblzma-dev

 

 

3. Basic GitHub Checkout

 

여러 설치 방법 중에서 가장 깔끔하고 무난한 방법이라서 선택했다.

 

① git clone

❯ git clone https://github.com/pyenv/pyenv.git ~/.pyenv

 

② build

꼭 해야하는 과정은 아니지만, 성능 향상을 위해서 추천한다.

❯ cd ~/.pyenv && src/configure && make -C src
make: 디렉터리 '/home/chani/.pyenv/src' 들어감
gcc -fPIC     -c -o realpath.o realpath.c
gcc -shared -Wl,-soname,../libexec/pyenv-realpath.dylib  -o ../libexec/pyenv-realpath.dylib realpath.o 
make: 디렉터리 '/home/chani/.pyenv/src' 나감

 

③ Configure your shell's environment for Pyenv

여기에서는 zsh 환경에 대해서만 진행한다. 다른 쉘을 사용한다면 GitHub 사이트 방문해서 참고하면 되겠다.

아! MacOS의 zsh 환경에서는 .profile 부문만 빼고 진행하면 된다.

> echo 'export PYENV_ROOT="$HOME/.pyenv"' >> ~/.zprofile
echo 'export PATH="$PYENV_ROOT/bin:$PATH"' >> ~/.zprofile
echo 'eval "$(pyenv init --path)"' >> ~/.zprofile

echo 'export PYENV_ROOT="$HOME/.pyenv"' >> ~/.profile
echo 'export PATH="$PYENV_ROOT/bin:$PATH"' >> ~/.profile
echo 'eval "$(pyenv init --path)"' >> ~/.profile

echo 'eval "$(pyenv init -)"' >> ~/.zshrc

 

④ 재로그인 / 재부팅

로그아웃 후에 다시 로그인 하거나, 재부팅을 해야 이하 과정이 제대로 진행된다.

 

⑤ 확인

제대로 설치되었는지 확인해보자. 아래 결과가 나오지 않으면 위의 과정을 다시 한 번 점검해보기 바란다.

❯ pyenv versions
* system (set by /home/chani/.pyenv/version)

 

 

4. Python Install

 

이제 새로운 버전의 Python을 설치해보자.

현재 다운로드 받을 수 있는 버전들을 확인하고 싶으면 아래 사이트를 참고하기 바란다.

  - https://www.python.org/downloads/

 

① Python Install

❯ pyenv install 3.8.12
Downloading Python-3.8.12.tar.xz...
-> https://www.python.org/ftp/python/3.8.12/Python-3.8.12.tar.xz
Installing Python-3.8.12...
Installed Python-3.8.12 to /home/chani/.pyenv/versions/3.8.12

 

② 확인

방금 설치한 3.8.12 버전을 볼 수 있다. (하지만 현재 설정된 것은 system에 설치된 버전이다)

❯ pyenv versions
* system (set by /home/chani/.pyenv/version)
  3.8.12

 

③ 추가

3.9 버전도 추가로 설치해보자.

❯ pyenv install 3.9.10
Downloading Python-3.9.10.tar.xz...
-> https://www.python.org/ftp/python/3.9.10/Python-3.9.10.tar.xz
Installing Python-3.9.10...
Installed Python-3.9.10 to /home/chani/.pyenv/versions/3.9.10

❯ pyenv versions
* system (set by /home/chani/.pyenv/version)
  3.8.12
  3.9.10

 

 

5. command

 

전체 명령어에 대한 가이드는 아래 링크를 참조하기 바란다.

  - https://github.com/pyenv/pyenv/blob/master/COMMANDS.md

 

주로 사용할 것은 local / global / shell 이지 않을까 싶다.

❯ cd /srv/workspace/pyenv-test

❯ pyenv versions
  system
* 3.8.12 (set by /home/chani/.pyenv/version)
  3.9.10

❯ ls -al
합계 8
drwxrwxr-x 2 chani chani 4096  3월 14 23:01 .
drwxr-xr-x 4 chani chani 4096  3월 14 23:00 ..

❯ pyenv local 3.9.10

❯ ls -al
합계 12
drwxrwxr-x 2 chani chani 4096  3월 14 23:03 .
drwxr-xr-x 4 chani chani 4096  3월 14 23:00 ..
-rw-rw-r-- 1 chani chani    7  3월 14 23:03 .python-version

❯ pyenv versions
  system
  3.8.12
* 3.9.10 (set by /srv/workspace/pyenv-test/.python-version)

❯ pyenv local --unset

❯ ls -al
합계 8
drwxrwxr-x 2 chani chani 4096  3월 14 23:04 .
drwxr-xr-x 4 chani chani 4096  3월 14 23:00 ..

❯ python --version
Python 3.8.12

❯ pyenv versions
  system
* 3.8.12 (set by /home/chani/.pyenv/version)
  3.9.10

 

이제 Python 버전의 괴로움에서 벗어나자~~~!!!

 

반응형

+ Recent posts